135 lines
4.6 KiB
C#
135 lines
4.6 KiB
C#
![]() |
using System;
|
|||
|
namespace Cosmobox
|
|||
|
{
|
|||
|
public class PerlinNoise
|
|||
|
{
|
|||
|
private int[] p; // 混淆表
|
|||
|
|
|||
|
// 构造函数:初始化混淆表
|
|||
|
public PerlinNoise(int seed)
|
|||
|
{
|
|||
|
// 初始化为0-255的随机排列
|
|||
|
p = new int[512]; // 混淆表加倍以方便使用
|
|||
|
int[] permutation = new int[256];
|
|||
|
Random random = new Random(seed);
|
|||
|
|
|||
|
// 填充数组为0-255
|
|||
|
for (int i = 0; i < 256; i++)
|
|||
|
{
|
|||
|
permutation[i] = i;
|
|||
|
}
|
|||
|
|
|||
|
// 使用Fisher-Yates算法打乱数组
|
|||
|
for (int i = 0; i < 256; i++)
|
|||
|
{
|
|||
|
int swapIndex = random.Next(256);
|
|||
|
int temp = permutation[i];
|
|||
|
permutation[i] = permutation[swapIndex];
|
|||
|
permutation[swapIndex] = temp;
|
|||
|
}
|
|||
|
|
|||
|
// 将打乱后的数组复制两次,生成512个元素的混淆表
|
|||
|
for (int i = 0; i < 256; i++)
|
|||
|
{
|
|||
|
p[i] = permutation[i];
|
|||
|
p[i + 256] = permutation[i];
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// 平滑函数 (6t^5 - 15t^4 + 10t^3)
|
|||
|
private double Fade(double t)
|
|||
|
{
|
|||
|
return t * t * t * (t * (t * 6 - 15) + 10);
|
|||
|
}
|
|||
|
|
|||
|
// 线性插值
|
|||
|
private double Lerp(double t, double a, double b)
|
|||
|
{
|
|||
|
return a + t * (b - a);
|
|||
|
}
|
|||
|
|
|||
|
// 计算梯度向量和距离向量的点积
|
|||
|
private double Grad(int hash, double x, double y, double z)
|
|||
|
{
|
|||
|
// 根据hash值确定使用哪个梯度向量
|
|||
|
// 12个梯度向量由以下组合构成:(+/-1, +/-1, 0), (+/-1, 0, +/-1), (0, +/-1, +/-1)
|
|||
|
switch (hash & 0xF) // 取hash值的最后4位
|
|||
|
{
|
|||
|
case 0x0: return x + y;
|
|||
|
case 0x1: return -x + y;
|
|||
|
case 0x2: return x - y;
|
|||
|
case 0x3: return -x - y;
|
|||
|
case 0x4: return x + z;
|
|||
|
case 0x5: return -x + z;
|
|||
|
case 0x6: return x - z;
|
|||
|
case 0x7: return -x - z;
|
|||
|
case 0x8: return y + z;
|
|||
|
case 0x9: return -y + z;
|
|||
|
case 0xA: return y - z;
|
|||
|
case 0xB: return -y - z;
|
|||
|
case 0xC: return y + x; // 这四个是重复的,但Ken Perlin的原始实现中包含它们。
|
|||
|
case 0xD: return -y + x; // 它们对噪声质量影响不大,但保持了表格的一致性。
|
|||
|
case 0xE: return y - x;
|
|||
|
case 0xF: return -y - x;
|
|||
|
default: return 0; // 不应该发生
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/// <summary>
|
|||
|
/// 为给定的(x, y, z)坐标生成3D Perlin噪声。
|
|||
|
/// 输出值通常在-1到1之间。
|
|||
|
/// </summary>
|
|||
|
public double Noise(double x, double y, double z)
|
|||
|
{
|
|||
|
// 找到包含该点的单位立方体
|
|||
|
int X = (int)Math.Floor(x) & 255;
|
|||
|
int Y = (int)Math.Floor(y) & 255;
|
|||
|
int Z = (int)Math.Floor(z) & 255;
|
|||
|
|
|||
|
// 找到该点在立方体内的相对x, y, z坐标
|
|||
|
x -= Math.Floor(x);
|
|||
|
y -= Math.Floor(y);
|
|||
|
z -= Math.Floor(z);
|
|||
|
|
|||
|
// 计算x, y, z的平滑曲线
|
|||
|
double u = Fade(x);
|
|||
|
double v = Fade(y);
|
|||
|
double w = Fade(z);
|
|||
|
|
|||
|
// 对立方体的8个角进行哈希计算
|
|||
|
int A = p[X] + Y;
|
|||
|
int AA = p[A] + Z;
|
|||
|
int AB = p[A + 1] + Z;
|
|||
|
int B = p[X + 1] + Y;
|
|||
|
int BA = p[B] + Z;
|
|||
|
int BB = p[B + 1] + Z;
|
|||
|
|
|||
|
// 获取所有8个角的哈希值
|
|||
|
int H000 = p[AA];
|
|||
|
int H100 = p[BA];
|
|||
|
int H010 = p[AB];
|
|||
|
int H110 = p[BB];
|
|||
|
int H001 = p[AA + 1];
|
|||
|
int H101 = p[BA + 1];
|
|||
|
int H011 = p[AB + 1];
|
|||
|
int H111 = p[BB + 1];
|
|||
|
|
|||
|
// 计算所有8个角的点积并插值
|
|||
|
double x0, x1, y0, y1;
|
|||
|
|
|||
|
x0 = Lerp(u, Grad(H000, x, y, z), // (0,0,0)
|
|||
|
Grad(H100, x - 1, y, z)); // (1,0,0)
|
|||
|
x1 = Lerp(u, Grad(H010, x, y - 1, z), // (0,1,0)
|
|||
|
Grad(H110, x - 1, y - 1, z)); // (1,1,0)
|
|||
|
y0 = Lerp(v, x0, x1);
|
|||
|
|
|||
|
x0 = Lerp(u, Grad(H001, x, y, z - 1), // (0,0,1)
|
|||
|
Grad(H101, x - 1, y, z - 1)); // (1,0,1)
|
|||
|
x1 = Lerp(u, Grad(H011, x, y - 1, z - 1), // (0,1,1)
|
|||
|
Grad(H111, x - 1, y - 1, z - 1)); // (1,1,1)
|
|||
|
y1 = Lerp(v, x0, x1);
|
|||
|
|
|||
|
return Lerp(w, y0, y1);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|